Тел.: +7(915)814-09-51 (WhatsApp)
E-mail:

Russian English
scientificjournal-foto2

Если Вы хотите напечататься в ближайшем номере, не откладывайте отправку заявки. Потратьте одну минуту, заполните и отправьте заявку в Редакцию.

Печатная версия журнала «Вестник науки и образования» выходит ежемесячно (ориентировочно 19 числа, ежемесячно уточняется). Следующая печатная версия журнала выйдет - 21.01.2025 г. Статьи принимаются до 17.01.2025 г.

В электронной официальной версии (Роскомназдор Эл № ФС77-58456) журнала Вы можете опубликовать статью моментально после одобрения её публикации. Как отдельный электронный журнал, журнал выходит каждую пятницу. Следующая электронная версия журнала выйдет - 10.01.2025 г. Статьи принимаются до 09.01.2025 г.



Коростелев С.П.

Email: Korostelev667@scientifictext.ru

Коростелев Сергей Павлович – соискатель учёной степени, кафедра литейного производства, металлургический факультет, Липецкий государственный технический университет, г. Липецк

Аннотация: статья представляет собой исследовательскую работу посвящённую особенностям функционирования и генезиса современной математики. Автор, не забывая осветить основные этапы развития современной математики, обоснованно опровергает укоренившиеся в ней теории, и столь же обоснованно указывает на устойчивый отрицательный вектор движения научной мысли в обозначенной научной дисциплине, пагубно отражающийся на её функционировании. Актуальность данной работы обусловлена фактом появления отчётливых следов упадка в математике, что в свою очередь неизменно ведёт к упадку иных научных дисциплин, в той или иной степени связанных с ней. К новизне данной работы, следует относить факт нахождения в ней решений задач, которые человечество безуспешно пыталось

Подробнее...  

Селимханов Э.В.

Email: Selimkhanov666@scientifictext.ru

Селимханов Эмирхан Валерьевич - магистр, факультет математики и компьютерных наук, Дагестанский государственный университет,  г. Махачкала

Аннотация: в статье даны точные оценки скорости сходимости (наилучших приближений) ряда Фурье по собственным векторам некоторого симметричного оператора в гильбертовом пространстве. Ранее, пользуясь некоторыми хорошо известными фактами, мы построили обобщенный модуль непрерывности произвольного вектора гильбертова пространства, который позволил нам дать точные оценки скорости сходимости (наилучших приближений) ряда Фурье по произвольной ортогональной системе векторов. В этой работе с помощью симметричного оператора в гильбертовом пространстве мы вводим аналоги классов дифференцируемых функций, характеризующихся обобщенным модулем непрерывности и на этих классах, устанавливаем точные оценки скорости сходимости (наилучших приближений) рядов Фурье по собственным векторам этого оператора

Подробнее...  

Кто на сайте

Сейчас на сайте 263 гостя и нет пользователей

Импакт-фактор

Вконтакте

REGBAN