ЭПИДЕМИЯ COVID-19. МОСКВА И МОСКОВСКАЯ ОБЛАСТЬ. АНАЛИТИЧЕСКИЕ РАСЧЁТЫ И ПРОГНОЗЫ

Губенко С.И. Email: Gubenko692@scientifictext.ru

Губенко Сергей Иванович – кандидат технических наук, пенсионер, г. Москва

Аннотация: предложен аналитический метод расчёта динамики эпидемических процессов. Метод основан на аппроксимации фактических временных зависимостей - числа инфицированных людей, числа выздоровевших людей и числа умерших людей предложенными функциями, которые содержат четыре параметра. Значения этих параметров вычисляются методами оптимизации. Проведены расчёты для Москвы и Московской области. Совпадение расчётных и фактических значений хорошее. В Москве пройден максимум прироста числа инфицированных (плато) и затем пройден пик эпидемии (максимальное число болеющих) и сейчас уменьшается прирост числа инфицированных, снижается численность больных. Похожая ситуация и в Московской области. Сделан прогноз развития эпидемии. Ключевые слова: эпидемия, COVID-19, число инфицированных, число выздоровевших, число умерших, аналитические расчёты, прогнозы, Москва, Московская область.

EPIDEMIC COVID-19. MOSCOW AND THE MOSCOW REGION. ANALYSIS AND FORECASTS Gubenko S.I.

Gubenko Sergey Ivanovich – Candidate of Technical Sciences, Retiree, Moscow

Abstract: an analytical method of calculating of epidemic processes has been proposed. The method is based on approximation of actual dependencies - the number of infected people, the number of people who have recovered and the number of people who have died by the proposed functions, which contain four parameters. The values of these parameters are calculated by optimization methods. Calculations have been made for Moscow and the Moscow region. The convergence of calculated values and actual values is good. In Moscow, the maximum rate of growth of the infected people has passed and then passed the peak of the epidemic (maximum number of patients) and now the number of patients is reducing. The situation is similar in the Moscow region. A forecast of the epidemic has been made.

Keywords: epidemic, COVID-19, cases, number of infected people, number of deaths, analytical calculations, forecasts, Moscow, Moscow region.

УДК 616-036.22, 51-76

В мире общее число инфицированных коронавирусом SARS-CoV-2 продолжает довольно быстро увеличиваться, но все страны находятся на различных стадиях эпидемического процесса. Более того, в больших странах, таких как США, Россия, Бразилия и др., на различных стадиях находятся даже разные части этих стран (штаты, регионы).

Динамику развития эпидемии можно разбить на следующие стадии:

- 1) Зарождение.
- 2) Усиление.
- 3) Развитие.
- 4) Максимум.
- 5) Ослабевание.
- 6) Затухание.

Что касается России, то ситуация в ней различается по регионам и, например, Москва и Московская область уже прошли стадию максимума (пик эпидемии), когда было наибольшее число больных и сейчас находятся на стадии ослабевания эпидемии, когда постепенно отменяются ограничения.

Для описания и прогнозирования эпидемических процессов обычно используют математическое моделирование [1]. Известные модели — это системы из 3-5 дифференциальных уравнений, содержащих 5-7 параметров. Системы решаются численными методами.

Однако, не подменяя математического моделирования, динамику эпидемических процессов можно описать и с помощью аналитических методов [2].

В данной статье рассмотрим и опишем динамику эпидемических процессов в Москве и Московской области и сделаем некоторые прогнозы.

Методика расчётов

Очень кратко напомним методику и приведём расчётные формулы.

Метод основан на аппроксимации временных зависимостей числа инфицированных людей - $N_{inf}(t)$, числа выздоровевших людей - $N_r(t)$ и числа умерших - $N_d(t)$, а также их суточных приращений - $\Delta N_{inf}(t)$, $\Delta N_r(t)$ и $\Delta N_d(t)$ функциями:

$$\begin{split} N(t) &= N_0 \cdot 0.5 \cdot (1 + \text{erf} \left((\text{Ln}(t - t_0) - \text{m}) / (\text{s} \cdot \sqrt{2}) \right), \\ \Delta N(t) &= N_0 \cdot (1 / ((t - t_0) \cdot \text{s} \cdot (2\pi)^{0.5})) \cdot \text{exp} \left(- (\text{Ln}(t - t_0) - \text{m})^2 / (2 \cdot \text{s}^2) \right), \end{split} \tag{2}$$

гле

 N_0 , m, s, t_0 – параметры,

erf (z) – интеграл вероятностей (функция ошибок).

Четвёртая важная функция эпидемического процесса — число одновременно болеющих - N_s , находилась из очевидного уравнения:

$$N_s = N_{inf} - N_r - N_d$$
. (3)

Параметр N_0 имеет смысл общего числа инфицированных (выздоровевших, умерших) за всё время эпидемии. Параметр t_0 отвечает за время реального начала процесса, это сдвиг по времени от выбранного начала отсчёта времени.

Параметры $(N_0; m; s; t_0)$ вычисляются методами оптимизации из уже имеющихся фактических данных, например, за первые 1-3 месяца эпидемии.

Эпидемия в Москве

Первые инфицированные появились в Москве в начале марта 2020 года. Так 17-го марта их было 56 человек; 26-го марта 546; 29-го марта 1014; 7-го апреля 5181 и далее эпидемия начала набирать обороты. Для вычисления параметров уравнений были выбраны фактические статистические данные числа инфицированных - N_{inf} , числа выздоровевших - N_r и числа умерших - N_d в первые 125 дней эпидемии (125 точек с 5-го марта по 7-е июля). В результате оптимизации получили:

 $N = (N_0; m; s; t_0)$ S_N и $S_{\Delta N}$,

 $N_{inf} = (240\ 000\ ;\ 4,29\ ;\ 0,32\ ;\ 1,5\)$ $S_N = 342,\ S_{\Delta N} = 56;$

 $N_r = (235\ 000\ ;\ 4,45\ ;\ 0,40\ ;\ 21\)$ $S_N = 392,\ S_{\Delta N} = 82;$

 $N_d = (4\ 600\ ;\ 4,32\ ;\ 0,38\ ;\ 14)$ $S_N = 3,8,\ S_{\Delta N} = 0,7;$

где S_N и $S_{\Delta N}$ — среднеквадратичные отклонения расчётных и фактических значений. Фактические данные и расчётные зависимости графически представлены на рис. 1-3.

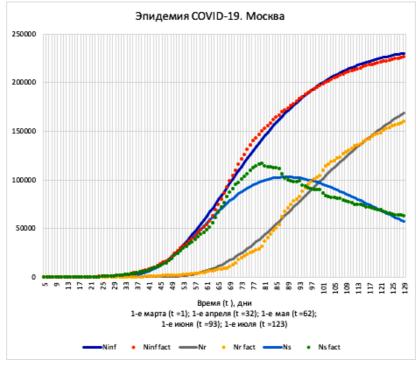


Рис. 1. Эпидемия COVID-19. Москва.

Изменение со временем числа инфицированных (Ninf), числа выздоровевших (Nr) и числа болеющих (Ns) на данный момент. Фактические данные – точки, расчётные значения – линии

Четыре основные функции, которые определяют динамику развития эпидемии, это - число инфицированных (Ninf), число выздоровевших (Nr), число умерших (Nd) и число болеющих (Ns) на данный момент. Три из этих функций представлены на этом рисунке. Видно, что число инфицированных продолжает расти, но кривая уже близка к выходу на насыщение. Этого пока нельзя сказать о кривой

числа выздоровевших. Позитивным фактом является то, что кривая, отвечающая за число болеющих, уже перевалила через максимум, а значит нагрузка на медицинские учреждения и медиков снижается.

Рис. 2. Суточные приросты числа инфицированных. Москва. Фактические данные – оранжевые точки, расчёты – синяя линия

Известно, что фактические данные приростов, неожиданно для всех, 1-го мая дали скачок примерно в 2 раза, с 3 тысяч в сутки до 6 тысяч. Эту ступеньку (оранжевые точки), хорошо видно на рис. 2. В результате этого скачка, к сожалению, более благоприятный старый сценарий развития событий в Москве был отброшен, а прогнозы оказались сильно заниженными. Объяснить этот скачок можно, сделав предположение, что за 1-2 недели до 1-го мая возник второй очаг, то есть по каким-то причинам появились дополнительно 2-4 тысячи инфицированных. С целью упрощения вычислений, мы "усредним" эти два очага и заменим их одним. Это "усреднение" видно по тому, как идёт расчётная синяя линия (Рис. 2).

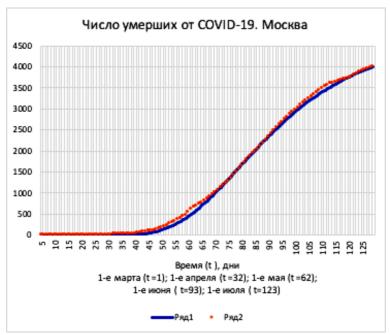


Рис. 3. Число умерших от COVID-19. Москва. Фактические данные – оранжевые точки, расчёты – синяя линия

Кривая, описывающая число умерших, пока не демонстрирует выход на насыщение, но перегиб уже виден, плато пройдено.

Если говорить в целом, то по этим графикам видно хорошее согласие фактических и расчётных данных для Москвы.

Эпидемия в Московской области

Первые инфицированные появились в Московской области, так же, как и в Москве, в начале марта 2020 года. Так 17-го марта их было 10 человек; 29-го марта 112; 8-го апреля 549; 11-го апреля 1082; 20-го апреля 5241 и далее рост усилился.

Для вычисления параметров уравнений были выбраны фактические статистические данные числа инфицированных - N_{inf} , числа выздоровевших - N_r и числа умерших - N_d в первые 125 дней эпидемии (125 точек с 5-го марта по 7-е июля). В результате получили:

$$\begin{split} N &= (N_0 \; ; \; m \; ; \; s \; ; \; t_0) \quad S_N \; \text{ is } S_{\Delta N} \; , \\ N_{\inf} &= (65\; 000 \; ; \; 4,36 \; ; \; 0,35 \; ; \; 5) \quad S_N = 59 , \; S_{\Delta N} = 8; \\ N_r &= (64\; 000 \; ; \; 4,63 \; ; \; 0,27 \; ; \; 18) \quad S_N = 95 , \; S_{\Delta N} = 16; \\ N_d &= (1\; 200 \; ; \; 4,41 \; ; \; 0,40 \; ; \; 17,5) \quad S_N = 2,2, \; S_{\Delta N} = 0,6. \end{split}$$

Видно, что среднеквадратичные отклонения невелики по сравнению с абсолютными значениями. Фактические данные и расчётные зависимости представлены на рис. 4-6.

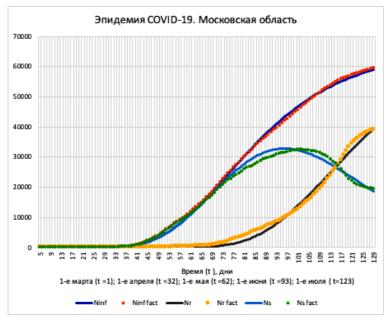


Рис. 4. Эпидемия COVID-19. Московская область.

Изменение со временем числа инфицированных (Ninf), числа выздоровевших (Nr) и числа болеющих (Ns) на данный момент. Фактические данные – точки, расчётные значения – линии

Видим, что эпидемия в Московской области отстаёт на несколько дней от эпидемии в Москве, да и темпы у неё пониже. Кривая, описывающая изменение численности инфицированных (синяя линия) пока не вышла на насыщение, но даже по ней видно, что максимум приростов уже пройден, изменился знак кривизны.

Суточные приросты уже прошли максимальное значение (рис. 5), поэтому скоро это будет видно и на кривой инфицирования. Число одновременно болеющих перевалило через максимум.

Puc. 5. Суточные приросты числа инфицированных. Московская область. Фактические данные — оранжевые точки, расчётные значения — синяя линия

Рис. 6. Число умерших в Московской области. Расчётная кривая – синяя линия, фактические данные – точки

Кривая, описывающая число умерших, тоже пока не приблизилась к насыщению. Согласие расчётных и фактических данных по Московской области тоже хорошее.

Прогноз

Зависимости получены и, казалось бы, по ним можно легко сделать прогноз дальнейшего развития эпидемий в Москов и Московской области на месяц, а лучше на два. Чего проще, подставляешь в уравнения соответствующее время (t), проводишь несложные вычисления, получаешь значения и прогноз готов. Однако, к сожалению, не всё так просто. Ведь, по сути, это будет экстраполяция, полученной на одном временном интервале зависимости, на другой временной интервал. То есть, неявно, мы постулируем, что на новом интервале будут справедливы и форма зависимости (формулы) и останутся те же значения параметров. Но ведь условия протекания эпидемий сейчас изменяются, а значит и величины параметров могут изменяться.

Напомню, большинство параметров были вычислены на массивах до 10-го июня, то есть для условий, когда действовали меры ограничения контактов. Сейчас эти меры постепенно снимаются, а значит и

параметры изменяются. Следовательно, по "старым" зависимостям не совсем корректно делать долгосрочный прогноз на месяц и более. На тему прогнозов, точности вычислений, достоверности и точности фактических данных, связи значений параметров с условиями, в которых проходит эпидемия, поговорим отдельно, в другой статье.

А сейчас сделаем прогноз, полагая, что:

- 1) "старые" значения параметров изменятся не сильно из-за снятия ограничительных мер и
- 2) не появятся новые очаги инфицирования.

Таблица 1. Прогноз на 1-е августа 2020 года

Регион	Число инфиц.	Прирост числа инфиц.	Число выздоровевших	Число умерших
Москва	237 451	138	203 163	4 366
Мос. Обл.	62 862	92	54 555	1 077

В таблице приведены расчётные значения на 1-е августа без округлений и учёта ошибок самого метода вычислений. Понятно, что это не означает, что прогноз даётся с точностью до одного человека. Интуитивно ясно, что точность прогнозирования на 20 дней вперёд для числа инфицированных и числа выздоровевших это - тысячи. Надеюсь, что отклонения расчётных значений от фактических окажутся в пределах $\pm 5\%$.

Заключение

Предлагается относительно простой метод аналитического расчёта динамики развития эпидемий. Метод основан на аппроксимации основных зависимостей (число инфицированных, число умерших и число выздоровевших) функциями, которые хорошо известны в теории вероятности, а именно для логнормального распределения. Эти функции были несколько видоизменены и в них также было введено время, как переменная.

Функции содержат четыре параметра, значения которых находятся методами оптимизации. Расчёты, сделанные ранее [2] для эпидемических процессов в Германии, Китае, Италии и Бельгии, показали хорошее согласие с фактическими данными.

В данной статье проведены расчёты эпидемических процессов для Москвы и Московской области. В Москве пройден максимум прироста числа инфицированных (плато) и затем пройден пик эпидемии (максимальное число болеющих) и сейчас уменьшается прирост числа инфицированных, снижается численность больных. Похожая ситуация и в Московской области. Пока нет никаких возвратных негативных явлений, из-за довольно быстрого снятия ограничительных мер и можно надеяться на постепенное, плавное завершение эпидемических процессов. Хотя, на мой взгляд, нет никаких разумных оснований для утверждений, что не будет второй волны эпидемии. Посудите сами:

- 1) иммунитета у большинства населения нет, и неясно даже как долго будет существовать иммунитет у переболевших, было сообщение, что у переболевших в лёгкой форме иммунитет сохраняется две нелели, маловато.
- 2) вакцины нет, и даже если она появится, то вакцинация займёт не один месяц и неизвестно сколько времени будет сохраняться иммунитет,
 - 3) эффективных лекарств нет,
 - 4) внутренние очаги распространения инфекции пока не ликвидированы полностью,
 - 5) внешние источники инфицирования заработают опять, после открытия границ.

Что имеем положительного:

- 1) дополнительные койко-места в больницах,
- 2) врачи получили большой опыт борьбы с эпидемией,
- 3) налажено массовое тестирование, порядка 300 тысяч в сутки.

Так что, пока главная надежда, что вирус ослабнет, и эпидемия сама полностью затухнет. А нам остаётся - надеясь на лучшее, наслаждаться жизнью, наблюдать и анализировать происходящее.

В дальнейшем планируется провести подобные расчёты для других стран, а также более детально описать эпидемические процессы в различных регионах России.

Список литературы / References

1. *Бузин П.* Эпидемии. Модели. Зараза гостья наша. Как математика помогает бороться с эпидемиями [Электронный ресурс] (26.12.2019). Режим доступа: https://nplus1.ru/material/2019/12/26/epidemicmath/ (дата обращения: 01.06.2020).

2. *Губенко С.И.* Эпидемии коронавируса. Аналитические расчёты и прогнозы. [Электронный ресурс] (06.06.2020). Режим доступа: https://trueinform.ru/modules.php?name=News&sid=47411 (дата обращения: 06.07.2020).