Взаимосвязь качества зерна сортов твердой пшеницы с структурой урожая Гусейнов С. И.¹, Гусейнли Г. С.²

¹Гусейнов Сейфулла Имамали оглы / Huseynov Seyfulla Imfmfli oqli - кандидат биологических наук, ведущий научный сотрудник,

Научно-исследовательский институт земледелия;

²Гусейнли Гюлнар Сейфулла кызы / Huseynli Qulnar Seyfulla qizi - студентка пятого курса, кафедра хирургических болезней, факультет лечебный, Азербайджанский медицинский университет, г. Баку, Азербайджанская республика

Аннотация: в следствие непропорциональной изменчивости признака у некоторых сортов в отдельные годы наблюдалось близкое содержание белка в зерне, а в следующие годы были выявлены сорта, которые поэтому показателю существенно отличалось друг от друга. В результате проведения отбора были выделены сорта Гарагылчыг-2, Шираслан-23 и Тертер для возделывания в орошаемых условиях Республики, которые в отличие от других сортов имеют высококачественные признаки. Ключевые слова: сорт, твердая пшеница, белок, качество зерна, урожайность.

УДК633.11:551.5

Актуальность темы. Характер азотного метаболизма в течение вегетации, обсужденный нами ранее, показал, что сорта пшеницы имеет свои особенности усвоения и переработки минерального азота при биосинтезе полноценного белка на отдельных фазах развития растений [1, 4]. Как эти особенности метаболизма отражаются в конечном продукте, в какой степении генетически сопряжены качественные со структурой урожая и повышения белковости в связи с условиями выращивания [3, 6]. Данные по выяснению таких вопросов приводятся в настоящей статье, которая имеет селекционную и практическую необходимость для представления моделей будущих сортов [1]. Поэтому в настоящее время для пшеницы недостаточно разработаны приемы селекции на качество, включая оценку содержания белка, слабо изучена связь закономерностей этого признака со структурой урожая.

Таким образом, повышенное содержание белка в растениях играет, как известно, исключительно большую роль в пищевом балансе и, особенно, увеличения его продуктивности. Решение увеличения производства белка для удовлетворения потребностей населения страны может осуществляться повышением урожайности сельскохозяйственных культур, улучшением структуры посевных площадей с целью расширения посевов под культурами с наибольшим выходом белка с гектара; увеличением содержания белка.

Цель и задачи исследования. Целью работы является определение содержания белка зерен пшеницы, полученной при широком использовании селекционно-генетических процессов для создания новых высокоурожайных, засухоустойчивых сортов пшеницы идеального типа с повышенным содержанием белка.

Методы и объекта исследования. Объектом исследования служили сорта пшеницы, выделенные из питомников ИКАРДА как устойчивых к ржавчинным болезням и СИММИТ-а международного питомника, отличающиеся по продолжительности вегетации, росту, белковости, урожайности и засухоустойчивости мягкого и твердого типа. С этой целью Опыты проводились на научнопроизводственных базах АзНИИ Земледелия, изучались местные перспективные сорта озимой твердой пшеницы, а также генотипы поступившие из Международных центров СИММИТ и ИКАРДА. Опыты проводились в 2014-2015 годах в двух вариантах: І- в оптимальном режиме полива, ІІ- без полива за весь период вегетации. Стандартный сорт для твердых сортов пшеницы был Баракатли-95. Площадь учетной делянки 50 м², повторность опыта четырехкратная. В течение вегетационного периода согласно методика полевого опыта систематически проводились фенологические наблюдения за состоянием и ходом роста и развития растений [5]. Содержания формы азота определяли по модифицированным микрометодам Къельдаля с помощью прибора Keltek 1003 (фирма LKB). Для пересчета азота на белок использовали коеффициент N х 5,7 [7].

Результаты и их обсуждение. Конечная направленность азотного метаболизма растений наиболее четко определяется структурой урожая и его качеством. В нем суммированы многочисленные признаки, которые контролируются различными сцепленными генами [2]. Это представляет возможность определить характер сопряженности между качеством белка с остальными элементами урожая.

При определении качества урожая учитывали в основном число, массу зерна и белка с одного растения и колоса, массу 1000 зерен, содержание белка в зерне, структуру урожая, которая определяется количеством продуктивных стеблей с единицы площади, биологическим урожаем, урожайностью зерна, белковой продуктивностью.

Качественные показатели зерна районированных и перспективных сортов твердых пшениц в связи с вариантом полива

No	сорт	Вари	Уро	масса	Зерен в колосе		Азот,	Бе	Сбор
		анты	жай,	1000	Число,	Mac	%	лок,	белка,
		опыта	ц/га	зерен,г	шт.	са,г		(в	ц/га
								%)	
1	Гырмыз	I	28,4	37,5	50,8	2,15	2,45	14,0	3,98
	Ы	II	24,5	32,1	39,8	1,59	2,56	14,6	3,58
	бугда								
2	Шарк	I	36,8	48,9	49,4	2,53	2,34	13,4	4,93
		II	27,4	45,2	41,4	1,83	2,49	14,2	3,89
3	Гарагыл	I	49,1	33,2	65,2	2,83	2,38	13,6	6,68
	чыг-2	II	32,3	31,6	50,6	2,20	2,63	15,0	4,85
4	Вугар	I	34,6	33,4	59,2	2,54	2,59	14,8	5,12
		II	32,0	33,2	42,6	1,50	2,73	15,6	4,99
5	Ширасл	I	49,4	41,1	50,0	1,85	2,34	13,4	6,62
	ан-23	II	44,0	39,4	48,6	1,72	2,56	14,6	6,42
6	Баракат	I	41,4	40,0	49,8	2,28	2,38	13,6	5,63
	ли-95	II	37,0	34,2	49,0	2,13	2,59	14,8	5,48
7	Элиндж	I	39,1	39,5	59,4	3,23	2,49	14,2	5,55
	e-84	II	27,8	32,6	40,4	1,76	2,73	15,8	4,39
8	Тертер	I	41,0	42,8	60,0	2,98	2,49	14,2	5,82
		II	27,2	38,8	49,2	2,30	2,73	15,8	4,30

- I- Оптимальный режим полив,
- II- II- Без полив

Как известно, одним из основных компонентов урожая считается число зерен в колосе. Этот показатель тесно связан с урожайностью и зависит от условий среды в период закладки, дифференциации колоса, цветения и может изменяьтся в широких пределах от 8- 12 до 50- 55 шт. В наших исследованиях, в среднем за два года, этот показатель изменился от 49,4 до 65,2 шт. в оптимальном режиме полива у твердых сортов пшениц, а без поливном варианте 39,8 - 50,6 шт. (Табл. 1.). Масса 1000 зерен с главного колоса является важным показателем урожайности и зависит как от количества ее в колосе, так и от наполненности и крупности семян. Масса 1000 зерен в среднем за два года колеблется от 33,2 до 48,9 г в оптимальном режиме полива, а без поливном варианте от 31,6 до 45,2 г. По массе 1000 зерен твердые сорта пшеницы повысили стандарты 27,5 % и самый высокий показатель оказалось у сортов Тертер (42,8 г) и Шарк (48,9 г). На массу зерна с колоса большое влияние оказывают сортовые различия и агроэкологические условия. Основные элементы структуры урожая находятся во взаимной связи между собой. Между озерненностью колоса и масса зерна с колоса в большинство случаев проявляется положительная связь, что доказано и результатами, полученными в наших исследованиях. Самая высокая масса зерна с колоса также у сортов Гарагылчыг - 2 (2,83 г), Тертер (2,98 г) и Элиндже- 84 (3,23 г) в оптимальном режиме полива, а без поливном варианте у сортов Баракатли- 95 (2,13 г), Гарагылчыг- 2 (2,20 г) и Тертер (2,30 г) соответственно.

Результаты исследований показали (табл. 1), основные показатели, определяющие качество и структуру урожая, сильно подвергаются фенотипической изменчивости в связи с обеспечением растений элементами минерального питания и климатическими условиями вегетационного года. Согласно результатами, условия выращивания заметно влияют на относительную выраженность каждого из компонентов урожая. Так, улучшение условий питания способствовало повышению урожая зерна в среднем на 11,3 ц/га Элиндже - 84, 13,8 ц/га у сорта Тертер на 16,8 ц/га у Гарагылчыг - 2, на у, на 5,40 ц/га и 4,40 ц/га у сортов Шираслан - 23 и Баракатли- 95, соответственно.

Выявлено, что содержание белка в зерне пшеницы в зависимости от сортовых особенностей, почвенно - климатических условий и в связи с вариантом полива составляет от 13,4 до 15,8 % (табл. 1). Самое низкое содержание белка отмечено у сорта Шарк (13,4 %), Шираслан- 23 (13,4 %) в оптимальном режиме полива, самое высокое у сорта Элиндже- 84 (15,8 %) и Тертер (15,8 %) в без поливном варианте.

В Абшеронском районе на улучшенном фоне минерального питания белковость зерна пшеницы уменьшается у всех сортов от 14,8 до 13,4 % в оптимальном режиме полива, а без поливном варианте увеличивается от 14,2 до 15,8 % соответственно.

Результаты многолетних опытов показывают, что в различных почвенно- климатических зонах метеорологические факторы неодиноково влияют на содержание белка в семенах. Таким образом на основании многолетних исследований можно констатировать, что между содержанием урожайности и

белка в зерне пшеницы существует обратная зависимость (= - 0,62, = - 0,79), что необходимо для селекции при подборе исходного материала.

Выявлено что, белковая продуктивность у сортобразцов твердых пщеницы, в оптимальном режиме полива составляло от 3,98 до 6,68 ц/га, а в без поливном варианте этот показатель колеблся от 3,58 до 6,42 ц/га. Полученные результаты расширяют возможности улучения пищевой ценности зерна мягких и твердых пщениц путем воздействия на ее наследственный аппарат генетическими методами с целью изменения биохимического состава.

Выводы

- 1. Урожайность образцов твердой пшеницы, выделенных из международных питомников СИММИТ и ИКАРДА и местных образцов, в оптимальном режиме полива, а без поливном варианте в среднем колеблется в пределах 28,4 до 49,4 ц/га.
- 2. Выявлено что, у сортов твердой пшеницы масса 1000 зерен в среднем колеблется в пределах 31.6- $48.9 \, \Gamma$.
 - 3. У сортов твердой пшениц, содержание белка в зерне составляло от 13,4 до 15,8 %.
- 4. Выявлено, что белковая продуктивность сортов твердой пшеницы колеблется в пределах 3,58-6,68ц/га.

Литература

- 1. Алиев Д. А. Растения идеальной пшеницы «Вестник сельскохозяйственной науки», Баку, 1982, № 5. 3-11 с.
- 2. Вакар А. Б. Белковый комплекс клейковины-В.сб. «Растительные белки и их биосинтез», М, «Наука», 1975
- 3. Созинов А. А. Урожай и качество зерна.М., «Знание», 1976.
- 4. Коновалов Ю. Б. Формирование продуктивности колоса яровой пшеницы и ячменя. М., «Колос», 1981.
- 5. *Куперман Ф. М.* Морфофизиология растений. Морфофизиологический анализ этапов органогенеза различных жизненных форм покрытосеменных растений. Учеб.пособие для студентов биол. спец. унтов, 4-е изд. Перевып, и доп. М., выс. Шк., 1984.
- 6. *Павлов А. Н.* Закономерности накопления белка в зерне пшеницы и их значение для селекции на качество урожая. В сб. Физиология растении в помощь селекции.М., «Наука», 1974.
- 7. Плешков Б. П. Практикум по биохимии растений. М., «Колос», 1976.