ПОЛУЧЕНИЕ НОВЫХ ПРОИЗВОДНЫХ КСАНТОГЕНОВЫХ КИСЛОТ Гаджиева И.Б. Email: Hajiyeva638@scientifictext.ru

Гаджиева Ирада Балай кызы – ассистент,

кафедра чрезвычайных ситуаций и безопасности жизнедеятельности, строительно-технологический факультет, Азербайджанский архитектурно-строительный университет,

г. Баку, Азербайджанская Республика

Аннотация: проведено исследование по реакции взаимодействия хлорацетамида с формальдегидом в слабощелочной среде. Целью работы является синтез новых производных ксантогеновых кислот, содержащих наряду с ксантогеновой группой и амидную группу. Синтезированы N,N'-оксидиметиленбисалкилксантогенатоацетамид и N,N'-метиленбисалкилксантогенатоацетамид, обладающие биологической активностью. В статье приведены методы исследования и полученные экспериментальные данные, также даны все физико-химические показатели синтезированных новых производных ксантогеновых кислот. Строение синтезированных соединений подтверждено данными ядерной магнитно-резонансной спектроскопии.

Ключевые слова: хлорацетамид, конденсация, N,N'-оксидиметиленбисхлорацетамид.

PRODUCTION OF NEW DERIVATION OF XANTHOGENIC ACIDS Hajiyeva I.B.

Hajiyeva Irada Balay – Assistant,
DEPARTMENT OF EMERGENCY SITUATION AND SAFETY OF LIFE ACTIVITY,
CONSTRUKTION OF TECHNOLOGICAL FAKULTY,
AZERBAYCAN UNIVERSITY OF ARCHITECTURE AND CONSTRUCTION,
BAKU, REPUBUBLIC OF AZERBAIJAN

Abstract: a study was made of the interaction of chloroacetamide with formaldehyde in a weakly alkaline media. The aim of the work is the synthesis of new derivatives of xanthogenic acids containing amide group, along with the xanthogen group. N, N'-oxydimethylenebisalkylxanthanoacetamide and N, N'-methylenebisalkylxanthatoacetamide, having biological activity, were synthesized. The methods of investigation and experimental data, as well as all the physico-chemical parameters of the synthesized new derivatives of xanthogenic acids are given in the article. The structure of the synthesized compounds is confirmed by nuclear magnetic resonance spectroscopy data.

Keywords: chloroacetamide, condensation, N,N'-oxymethylenebischloroacetamide.

УДК 547.484.34,547.494.254,547.233

Химические соединения, содержащие в молекуле атомы серы, азота и различные функциональные группы улучшают смазывающие, а также биоцидные свойства масел [1-3]. Поэтому синтез новых серо- и азотосодержащих соединений представляет большой научный и практический интерес.

Целью исследований является синтез новых соединений, содержащих наряду с ксантогеновой группой и амидную группу, установление строений и биологической активности новых потенциально биологически активных, N,N'-оксидиметиленбисалкилксантогенатоацетамида и N,N'-метиленбисалкилксантогенатоацетамида.

Исследования показали, что для получения химически чистого N-метилолхлорацетамида с высокопроцентным выходом необходимо создать слабую щелочную среду.

$$CICH_{2}CONH_{2} + CH_{2}O \xrightarrow{\text{NaOH}} CICH_{2}CONHCH_{2}OH$$
 (1)

Анализ чистоты веществ определен методом ядерной магнитно-резонансой спектроскопии (ЯМР). Молекула N-метилолхлорацетамида содержит сигналы 3 карбоновых атомов, которые построены последовательно по нижеследующей интенсивности: δ_c =42.5 m.h. (CH₂Cl), 6.35 m.h. (CH₂-O) və 166.7 m.h. (C=O).

Исследования процесса, в зависимости от температуры, показывают, что при высокой температуре молекула N-метилолхлорацетамида конденсируя со второй молекулой, приводит к образованию N,N'-оксидиметиленбисалкилксантогенатоацетамида.

 $2CICH_2CONHCH_2OH \rightarrow (CICH_2CONHCH_2)_2O$ (2)

Цель получения N-замещенных хлорацетамидов заключалась в синтезе новых соединений как с тиокарбонатной так и амидной группами в молекуле путем взаимодействия их с солями ксантогенных кислот, включая получение N, N'-оксидиметилена и N, N'-метиленбисалкилксантоанатоацетамидов.

Вещества, которые объединяют две ксантогенатоацетамидные группы в молекуле, были получены реакцией алкилксантогенатов калия и бисхлорацетамидов, при мольном соотношении их 2:1 соответственно.

$$\begin{split} Z &= CH_2OCH_2, \, R = C_2H_5, \, C_4H_9, \, C_6H_{13}. \\ Z &= CH_2, \, R = C_2H_5, \, C_4H_9, \, C_6H_{13}. \end{split}$$

Реакцию проводят в растворе диметилформамида. Это обосновано тем, что метилен- и оксидиметиленбисхлорацетамиды с высокими температурами плавления плохо растворяются в воде и во время реакции их концентрации очень малы, что увеличивает время протекания реакции, а диметилформамид более приемлем для использования, поскольку он является подходящим растворителем, для всех компонентов реакции.

Экспериментальная часть:

Синтез N,N'-метиленбисалкилксантогенатоацетамида.

Метод А. В двухгорлую колбу добавляли 18,7 г хлорацетамид и 3г (0,1мол) параформ в водяной бане при температуре 120-130°C, 1,5 часа перемешивали. По окончании реакции продукт твердеет. Поэтому его перекристаллизовали в этиловом или изопропиловом спирте. Температура плавления 175°C. Выход чистого N,N'-метиленбисхлорацетамида 17 г (85%), Найдено %: N-13,87; Cl-35,14.C₅H₈O₂N₂Cl₂.Вычислено %: N-14,01; Cl -35,45.

Метод Б. В двугорлую колбу добавляли 23 г оксидиметилен-бисхлорацетамид 30 мл изопропилового спирта. В течение 2 часов при температуре 70-80°C, добавляя 1-2 мл насыщенную серную кислоту, до получения среды pH < 2. 2 часа перемешивали. Охлажденный полученный продукт переливали на воронку Бюхнера. Промывали дистиллированной водой и 2% гидрокарбонатом натрия до получения реакции нейтрализации. Выход 18 г (90%). Из метода A тоже получали кристаллы N,N'-метиленбисхлорацетамида.

Синтез N,N'-Оксидиметиленбисалкилксантогенатоацетамида.

Метод А. Общая методика. Перемешивали алкилксантогенат калия, оксидиметиленбисхлорацетамид соотношении 2:1 в растворе диметилформамида 3 часа в водяной бане. Полученный продукт промываем водой и сушим в эксикаторе.

Метод Б. По этому методу, О-алкил- S-(N-метилолкарбамоил) метилксантогенат и N,N'-оксидиметиленбисхлорацетамид получали путем конденсации. Продукт получали двумя разными способами. Синтезированы новые соединения N,N'оксидиметиленбисалкилксантогенатоацетамид и N,N'-метиленбисалкилксантогенатоацетамид, строение которых доказано с помощью данных ЯМР – спектроскопии. N,N'-оксидиметилен бисалкилксантогенатоацетамид и N,N'-метиленбисалкилксантогенатоацетамид являются биологическими активными соединениями [4]. Особенно актуальным является поиск новых химических средств защиты, не только имеющих противоизносное, противозадирное свойства, а также обладающие антимикробным действием (биоцидное), а также исследование ингибирующих свойств существующих и вновь синтезированных соединений в составе рецептур, обеспечивающих снижение уровня микробов в среде.

Микроорганизмы в процессе своей жизнедеятельности выделяют органические вещества, в которых плесневые грибы, накапливаясь на загрязненных поверхностях комплексные соединения. Бактерии могут активно разрушать не только частиц механизмов, но и поверхность стальной оболочки, либо непосредственно влияя на сталь, либо образуя в аэробных условиях сначала азотистую, а затем — азотную кислоту. Для повышения стойкости в состав масел добавляют присадки: бактерицидные — от бактерий, фунгицидные - от грибов, альгицидные - от водорослей.

В настоящее время с помощью химического синтеза получают тысячи новых соединений, испытания которых на различные виды биоцидной активности являются экономически невыгодными и малоэффективными. В связи с этим является наиболее актуальным использование наряду с традиционными экспериментальными исследованиями альтернативных «вне экспериментальных» методов химического скрининга, основанных на компьютерно-информационных технологиях установления связи молекулярной структуры присадки с её свойствами и позволяющих ускорить поиск эффективных биоцидных присадок. В таблице показаны результаты экспериментов.

№ п/ п	Z	R	Выход, %		Тпл.	Найдено, %		Химическая	Вычислено, %	
			А метод	В ме- тод	°C	N	S	формула	N	S
1.	CH ₂ OCH ₂	C_2H_5	90	92		6.72	31.73	$C_{12}H_{20}O_5N_2S_4$	6.99	32.02
2.	CH ₂ OCH ₂	C ₄ H ₉	92	92	142	5.88	28.13	$C_{16}H_{28}O_5N_2S_4$	6.13	28.08
3.	CH ₂ OCH ₂	C ₉ H ₁₉	93	92	85	4.56	21.55	$C_{26}H_{48}O_5N_2S_4$	4.69	21.49
4.	CH ₂	C ₂ H ₅	90	92		7.34	34.38	C ₁₁ H ₁₈ O ₄ N ₂ S ₄	7.56	34.61

Из таблицы видно показатели новых синтезированых соединений N,N'- оксидиметиленбисалкилксантогенатоацетамида и N,N'-метиленбисалкилксантогенатоацетамид, строение которых подтверждено с помощью данных ЯМР–спектроскопии.

Полученные N,N'-оксидиметиленбисалкилксантогенатоацетамид и N,N'-метиленбисалкилксантогенатоацетамид являются биологическими активными, имеющие противоизносное, противозадирными свойствами соединениями.

Список литературы / References

- 1. Препаративная органическая химия. (Перевод с польского Панова В.В. и Володиной В.С под ред. докт. хим. наук Вульфсона Н.С.) М.-Л., 1964 С. 396-399.
- 2. Общий практикум по органической химии (Перевод с немецкого под ред. проф. Коста А.Н.). М.: Мир, 1965. С. 393.
- 3. *Вейганд-Хильгетаг*. Методы эксперимента в органической химии. Перевод с немецкого под ред. проф. Суворова Н.Н. М.: Химия, 1968. С. 445-446.
- 4. *Hacıyeva İ.B.* və başqaları. Ksantogenatların baktriya və göbələklərə qarşı biosid aşqar kimi tədqiqi. Azərbaycan Kimya Jurnalı. № 4, 2008. S. 171-173.